

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 – CÁLCULO A – 2009.1

2ª LISTA (QUESTÕES DE PROVAS)

Regra da cadeia

$$(f(g(h(...(t(x))...))))' = f'(g(h(...(t(x))...))).g'(h(...(t(x))...)).h'(...(t(x))...).h'(x)$$

1. Para cada uma das funções seguintes, determine a derivada indicada:

a)
$$(1999-1) \frac{dy}{dx}$$
, sendo $y = \arctan(\frac{1}{x}) + (\arcsin(\sqrt{1-x^2}))[\log(1-2x)]$.

b)
$$(1999-2) \frac{dy}{yx}$$
, sendo $y = e^{\log_3(x)} - [\text{sen}(\cos(x))]^{1/3}$.

c)
$$(1999-2) \frac{dy}{dx}$$
, sendo $y = \arccos(\sec(e^x)) + x^2 \arctan(2x^2 + 2)$.

d)
$$(1999-2)$$
 $f'(0)$, sabendo que $f(tg(x)-\sqrt{3})-f(4\pi-3x)=\cos(x)$.

e)
$$(1999-2)$$
 $f'(3)$, sabendo que $f(1+2x)+f(2x^2+1)=4x^2+4x+2$, $\forall x \in \Re$.

f)
$$(1998-1)$$
 $f'(0)$, sendo $x.f(8-x) = f(x^2-9x+8) + \sqrt[3]{x^2}$ e $f(0) = -\frac{8}{3}$.

g)
$$(1998-1)$$
 $f'(1)$, sendo $f(x) = g(2-\cos(\frac{\pi x}{2})), \forall x \in [-1,1]$, com $g: \Re \to \Re$ uma

função derivável e g'(2) = 1.

h)
$$(2006-2)$$
 $f'(5)$, sabendo que $f(3x+2) + f(x^2+4) = \operatorname{arcotg}(x^2) + 3x$.

i)
$$(2005-2) f'(x)$$
, sendo $f(x) = (arctg 2x)^{(x^2+4x)}$, $0 < x < \pi/4$.

j)
$$(2006-1)$$
 g'(x), sabendo que $f(x) = x^3 + 2x$ e $g(x) = f(arcsenx)$

Derivada da função inversa

Se existe
$$f'(x)$$
 e $f'(x) \neq 0$, então existe $(f^{-1})'(f(x))$ e $(f^{-1})'(f(x)) = \frac{1}{f'(x)}$

- 2. Aplicando o resultado anterior, faça o que se pede nos itens a seguir:
 - a) (1999 1) Encontre $(f^{-1})'(f(x))$, sendo $f(x) = \frac{\sin(2x)}{2 + \cos(2x)}, x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.
 - b) (1999 2) Encontre o coeficiente angular da reta tangente ao gráfico de f^{-1} no ponto P (1, 0), sabendo que $f(x) = 3^{arctg(2x)} + x^2$.
 - c) (1998 1) Calcule g'(f(1)), sendo $f(x) = x^2 2^x$ e g a inversa de f.
 - d) (1999 2) Determine a derivada da função f^{-1} no ponto de abscissa 5, sabendo que $D(f) =]-\infty, -1[$ e f está definida pela equação $f(x) = x^3 4x + 5$.
 - e) (1998-1) Determine $(f^{-1})'(1)$, sendo $f(x) = e^{(x+2)/x^2}$
 - f) (2006 1) De termine $(f^{-1})'(0)$, sendo $f(x) = (x^3 + 1)arctg(\sqrt[3]{x^4 + 1})$.
 - g) (2006 2) Determine $(f^{-1})'(1)$, sendo $f(x) = 2^{\left(\frac{x}{x^2 + 1}\right)}$.

Derivação implícita.

- 3. Para cada um dos seguintes itens, determine a derivada indicada:
 - a) $(1999-1) \frac{dy}{dx}$, sendo y = f(x) dada implicitamente pela equação $xe^y \ln(y+1) = 3$.
 - b) $(1999-2) \frac{dx}{dy}$, sendo x = f(y) dada implicitamente pela equação $x^3 + xy + y^3 = 3$.
 - c) $(1999-2) \frac{dy}{dx}$, sabendo que $x^2 + \sqrt{\sin(y)} y^2 = 1$.
 - d) (1998-1) y'_P , sendo P(0,0) e y=f(x) uma função que satisfaz a equação $\arccos(3x) + \ln(1-2x) + x \cdot tg(y) + \sec(y-x) = 0$.
 - e) (1999 2) y'_{P} , sendo $P(1, 2\pi)$, sabendo que $x^{2}y + \text{sen}(y) = 2\pi$.
 - f) (2006-2) $\frac{dy}{dx}$, no ponto de ordenada 1, sabendo que y é dada implicitamente por $xarctg(y) + xe^x = \frac{\pi}{4} + e$.
 - g) (2006-1) $\frac{dy}{dx}$, no ponto de abscissa 0, sabendo que y é dada implicitamente por $xy^3 + 2y^3 = x 2y$
 - h) (2008-1) $\frac{dy}{dx}$, no ponto em que abscissa e ordenada possuem o mesmo valor, sabendo que y é dada implicitamente por $xy^2 + x^3 + y^3 = 3$.

Reta tangente e reta normal.

4. Determine:

- a) (1998 1) Uma equação da reta tangente à elipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ no ponto $P(\frac{2\sqrt{5}}{3}, 2)$.
- b) (1999 2) Uma equação da reta tangente ao gráfico de f^{-1} no ponto de abscissa a = f(3), sendo $f(x) = \frac{1}{\sqrt{x^3 2}}$, com x > 2.
- c) (1998 1) Uma equação da reta normal à curva $x^2 + 2xy + 3y^2 = 3$ no ponto do 2° quadrante, onde a reta tangente é perpendicular à reta r: x + y = 1.
- d) (1998 1) Uma equação da reta tangente ao gráfico de f, tal que, a mesma seja paralela a reta r: x-2y+2=0, sendo y=f(x) dada implicitamente pela equação $3y^2+2xy-x^2=-3$, para todo $x\in D(f)$, com f(x)>0.
- e) (2005 2) Determine a equação da reta tangente ao gráfico de f^{-1} no ponto P(1,0), sabendo que $f(x) = 2^{arctg(3x)}$.
- f) (2006 1) Determine a equação da reta normal ao gráfico de f^{-1} , no ponto de abscissa 1, sabendo que $f(x) = e^{\left(\frac{x+2}{x^2}\right)}$.
- g) (2008 2) uma equação da reta tangente ao gráfico de f^{-1} , no ponto de abscissa 0, sabendo que $f(x) = \frac{x^3 1}{x^2 + 1}$, x > 0.

Limites – Regra de L'Hospital.

5. Calcule os seguintes limites:

a)
$$(1998-1)$$
 $\lim_{x\to 1} \frac{\sec \frac{\pi x}{2} - arctg(x) - \frac{1}{x} + \frac{\pi}{4}}{x^2 + 2x - 3}$ b) $(1998-1)$ $\lim_{x\to 0} (\frac{x^2}{e^x - x - 1})$

c)
$$(1998 - 1)$$
 $\lim_{x \to \frac{\pi}{2}} \frac{\ln(\text{sen}(x))}{(\pi - 2x)^2}$

d)
$$(1998-1)$$
 $\lim_{x\to 0} \frac{e^{x^2}-1}{\sin^2 x}$

e)
$$(1999-1)$$
 $\lim_{x\to 0^+} \left(\frac{1}{1-e^{-x}} - \frac{1}{x}\right)$

f)
$$(1999 - 2)$$
 $\lim_{x\to 0^+} (\cot g(2x) \ arctg(x))$

g) (1999 – 2)
$$\lim_{x \to 1^+} \left(\frac{1 + x^2 - 2^x}{x^3 - x^2 - x + 1} \right)$$

h)
$$(1998-1)$$
 $\lim_{x\to 0^+} (\cos(x))^{(\frac{1}{x^2})}$

i)
$$(1998-1)$$
 $\lim_{x\to+\infty} (1+\frac{1}{x^2})^x$

j)
$$(1998-1) \lim_{x\to+\infty} (2^x + x)^{x^{-1}}$$

k)
$$(1998-1) \lim_{x\to+\infty} (2+x^2)^{(x)^{-1/2}}$$

1)
$$(1999-1)$$
 $\lim_{x\to 0} \left[tg\left(x+\frac{\pi}{4}\right) \right]^{(1/x)}$

m)
$$(1999-2)$$
 $\lim_{x\to 0} [\cos(2x)]^{3/x^2}$

n)
$$(1999-2) \lim_{x\to 0^+} (x+\cos(2x))^{\cos\sec(3x)}$$

o)
$$(2008 - 2)$$
 $\lim_{x \to 0^{-}} e^{\left(\frac{1}{x} - \frac{1}{senx}\right)}$

p)
$$(2005-2)\lim_{x\to+\infty} x\left(\frac{\pi}{2} - arctgx\right)$$

q)
$$(2005 - 2) \lim_{x \to 0^{+}} (1 + sen3x)^{(2/x)}$$

r) (2006 -1)
$$\lim_{x\to 0^+} (\cot g(2x) \operatorname{arct} g(x))$$

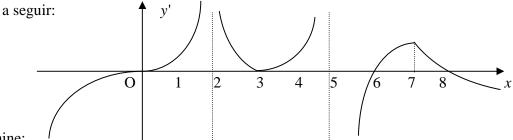
6. (2008 -2) Determine o valor da constante a tal que $\lim_{x\to +\infty} \left(\frac{x+a}{x-a}\right)^x = 4$.

Máximos e Mínimos

Com base na tabela seguinte e utilizando os conhecimentos sobre assíntotas, adquiridos durante o curso, resolva as questões 6, 7, 8, 9, 10 e 11.

RELAÇÃO ENTRE AS CARACTERÍSTICAS GRÁFICAS DE UMA FUNÇÃO E AS DERIVADAS DE 1ª e 2ª ORDENS DESTA FUNÇÃO								
Características	PONTO CRÍTICO DE f	ABSCIS SA DE MÁX. LOCAL DE G (f)	ABISCISSA DE MÍN. LOCAL DE G (f)	INTERVALO DE CRESCIMENTO	INTERVALO DE DESCRECIMENTO	INTERVALO ONDE G (f) TEM C.V.C	INTERVALO ONDE G (f) TEM C.V.B	ABISCISSA DE PONTO DE INFLEXÃO
1ª Derivada	$x_0 ext{ de } D(f)$ tal que $f'(x_0) = 0$ ou $\not\preceq f'(x)$	x_0 é ponto crítico de f e o sinal de f'(x) muda de + para – em x_0	x _o é ponto crítico de f e o sinal de f'(x) muda de – para + em x _o	+	ı	crescente	decrescente	f é contínua em x ₁ , x ₁ é ponto crítico de f' e f' muda de crescimento em x ₁
2ª Derivada	Não informa	Não informa	Não informa	Não informa	Não informa	+	_	$f''(x_2) = 0$ ou $\not \preceq f''(x_2)$ e f'' muda de sinal em x_2

7. (1998 - 1) Considere uma função definida e contínua em $\Re - \{2\}$ e o gráfico de f' é dado



Determine:

- 7.1) os pontos críticos de f.
- 7.2) os intervalos de crescimento e decrescimento de f.
- 7.3) os pontos de máximo e de mínimo locais de f.
- 7.4) os intervalos onde o gráfico de f tem concavidade voltada para cima (CVC) e onde tem concavidade voltada para baixo (CVB).
- 7.5) as abscissas dos pontos de inflexão do gráfico de f.
- 7.6) o esboço de um gráfico de f, considerando f(0) = 2, f(3) = -1, f(5) = 4, f(6) = 1, f(7) = 3 e f(8) = 6.
- 8. Para cada uma das funções dadas a seguir determine (se possível): o domínio de f, as interseções do gráfico de f com os eixos coordenados, as assíntotas ao gráfico de f, as interseções das assíntotas com o gráfico de f e com, os intervalos de crescimento e de decrescimento de f, os máximos e mínimos locais de f, os intervalos onde o gráfico tem concavidade voltada para cima e onde o gráfico tem concavidade voltada para baixo, os pontos de inflexão do gráfico de f e o esboço gráfico.

8.1)
$$(1999-1) f(x) = x + \frac{1}{x}, \text{ com } x \in \Re^*.$$

8.2)
$$(1998-2) f(x) = \frac{x-1}{x^2}$$
, sabendo que $f'(x) = \frac{2-x}{x^3}$ e $f''(x) = \frac{2(x-3)}{x^4}$.

8.3)
$$(1998 - 1)$$
 $f(x) = \frac{x^2 - 5x + 6}{x - 1}$, sabendo que $f'(x) = \frac{x^2 - 2x - 1}{(x - 1)^2}$ e $f''(x) = \frac{4}{(x - 1)^3}$.

8.4)
$$(1998-1)$$
 $f(x) = xe^{-3x}$, sabendo que $f'(x) = e^{-3x}(1-3x)$ e $f''(x) = e^{-3x}(9x-6)$.

8.5) (1999 – 1)
$$f(x) = \frac{2x^2}{x^2 + 1}$$
, sabendo que $f'(x) = \frac{4x}{(x^2 + 1)^2}$ e $f''(x) = \frac{4(1 - 3x^2)}{(x^2 + 1)^3}$.

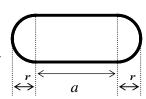
8.6) (1998 – 1)
$$f(x) = \frac{x^3 - 4}{x^2}$$
, sabendo que $f'(x) = \frac{x^3 + 8}{x^3}$ e $f''(x) = -\frac{24}{x^4}$.

8.7) (2006-1)
$$f(x) = \frac{x^2}{3-x}$$
, sabendo que $f'(x) = \frac{6x-x^2}{(3-x)^2}$ e $f''(x) = \frac{18}{(3-x)^3}$.

- 9. Determine as constantes a e b de modo que
 - 9.1) (1998 1) o gráfico da função $f(x) = x^3 + ax^2 + bx$ tenha máximo relativo no ponto P(1,9).
 - 9.2) (1998 1) o gráfico da função $f(x) = x^3 + ax^2 + bx + 1$ tenha ponto de inflexão P(2,1).
 - 9.3) (1998 1) a função $f(x) = x^3 + ax^2 + bx$ tenha um extremo em x = 2 e o gráfico de f tenha ponto de inflexão de abscissa $x = \frac{3}{2}$.
- 10. Resolva os seguintes problemas:
 - 10.1) (1999 2) O custo de produção de x unidades de um certo produto é dado, em reais, por $y = 3x^2 + 5x + 75$. Encontre o valor mínimo do custo médio por unidade produzida. (Sabe se que o custo médio por unidade produzida é dado por $C = \frac{y}{x}$).
 - 10.2) (1999 2) O preço de uma certa ação na bolsa de valores, em função do tempo t decorrido após sua compra por um investidor é dado por $P(t) = \frac{160t}{(4+t)^2} + 1$ (t em anos e P(t) em reais).

Para vendê-la, o investidor tem que esperar no mínimo 2 anos e no máximo 5 anos. Dê a melhor ocasião para venda.

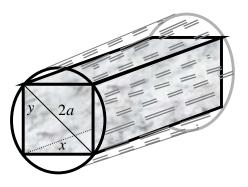
10.3) (1998 – 1) Uma pista de atletismo com comprimento total de 400m, consiste de dois semicírculos e um retângulo conforme figura ao lado . Determine as dimensões de a e r de tal maneira que a área retangular demarcada na figura seja máxima.



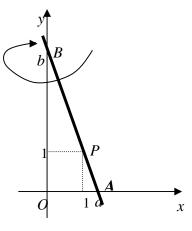
10.4) (1999 – 1) Determine as dimensões de uma caixa retangular de base quadrada, sem tampa, de forma que sua área total tenha 48 cm^2 e seu volume seja o maior possível.

10.5) (1999 – 2) Um cilindro circular reto é gerado pela rotação de um retângulo de 30 cm de perímetro em torno da reta determinada pelos pontos médios de dois lados opostos desse retângulo. Que dimensões o mesmo deve ter para gerar o cilindro de volume máximo?

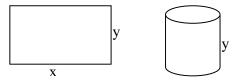
10.6) (1999 – 1) A resistência de uma viga é diretamente proporcional ao produto da largura pelo quadrado da altura da seção transversal ($R = \alpha x y^2$, sendo α a constante de proporcionalidade, x a largura e y a altura). Determine as dimensões da viga mais resistente que pode ser cortada de um toro cilíndrico de raio a. (Ver figura ao lado)



10.77) (2006 -1) Determine as dimensões do cone circular reto que minimizam seu volume, sabendo que a sua geratriz é o segmento de reta cujas extremidades são os pontos A(a, 0) e B(0,b), e que passa pelo ponto P(1, 1), conforme a figura ao lado.



10.8) (2008-1) Uma folha retangular com perímetro de 36 cm e dimensões $x \times y$ será enrolada para formar um cilindro. Que valores de x e y fornecem o maior volume.



10.9)(2008 -1) Deseja-se construir uma caixa com forma cilíndrica de volume igual a 2 m³. Nas laterais será utilizado um material que custa R\$10,00 por m², enquanto que na tampa e no fundo da caixa se utilizará um material que custa R\$15,00 por m². Determine as dimensões da caixa de forma que o custo seja mínimo.

RESPOSTAS

1)

a)
$$\frac{dy}{dx} = -\frac{1}{x^2 + 1} - \frac{x \log(1 - 2x)}{|x| \sqrt{1 - x^2}} - \frac{2 \arcsin\sqrt{1 - x^2}}{(1 - 2x) \ln 10}$$
.

b)
$$\frac{dy}{dx} = \frac{e^{\log_3 x}}{x \ln 3} + \frac{\sin x \cos(\cos x)}{3\sqrt[3]{\sin^2(\cos x)}}.$$

c)
$$\frac{dy}{dx} = -\frac{e^x \cos(e^x)}{\sqrt{1-\sin^2(e^x)}} + 2x \arctan(2x^2+2) + \frac{4x^3}{4x^4+8x^2+5}$$

d)
$$f'(0) = \frac{\sqrt{3}}{14}$$
. e) $f'(3) = 2$. f) $f'(0) = -\frac{1}{5}$. g) $f'(1) = \frac{\pi}{2}$. h) $f'(5) = 2/5$.

e)
$$f'(3) = 2$$

f)
$$f'(0) = -\frac{1}{5}$$

g)
$$f'(1) = \frac{\pi}{2}$$
.

h)
$$f'(5) = 2/5$$

i)
$$f'(x) = (arctg 2x)^{(x^2+4x)} \left[(2x+4) \ln(arctg 2x) + 2 \frac{(x^2+4x)}{(1+4x^2)arctg 2x} \right]$$

j)
$$g'(x) = \frac{(3(arcsenx)^2 + 2)}{\sqrt{1 - x^2}}$$

2. a)
$$(f^{-1})'(f(x)) = \frac{[2 + \cos(2x)]^2}{2[2\cos(2x) + 1]}$$
.

b)
$$a_t = (f^{-1})'(1) = \frac{1}{f'(0)} = \frac{1}{2 \ln 3}; \quad (f^{-1})'(f(x)) = \frac{1 + 4x^2}{2 \ln 3 \ 3^{arctg(2x)} + 2x + 8x^3}.$$

c)
$$g'(f(1)) = \frac{1}{2(1-\ln 2)}$$
; $g'(f(x)) = \frac{1}{2x-2^x \ln 2}$

d)
$$(f^{-1})'(5) = \frac{1}{f'(-2)} = \frac{1}{8}; \qquad (f^{-1})'(f(x)) = \frac{1}{3x^2 - 4}.$$

e)
$$(f^{-1})'(1) = \frac{1}{f'(-2)} = 4;$$
 $(f^{-1})'(f(x)) = \frac{-x^3}{(x+4) e^{(x+2)/x^2}}.$

f)
$$(f^{-1})(0) = \frac{1}{f'(-1)} = \frac{1}{3arctg(\sqrt[3]{2})}$$

g)
$$(f^{-1})'(1) = \frac{1}{f'(0)} = \frac{1}{\ln 2}$$

3. a)
$$\frac{dy}{dx} = \frac{(y+1)e^y}{1-(y+1)xe^y}$$

b)
$$\frac{dx}{dy} = -\frac{x+3y^2}{y+3x^2}$$

3. a)
$$\frac{dy}{dx} = \frac{(y+1)e^y}{1-(y+1)xe^y}$$
 b) $\frac{dx}{dy} = -\frac{x+3y^2}{y+3x^2}$ c) $\frac{dy}{dx} = \frac{4x\sqrt{\sin y}}{4y\sqrt{\sin y}-\cos y}$.

d)
$$y'_{p} = 6$$

e)
$$y'_{P} = -2\pi$$
.

f)
$$\frac{dy}{dx}(1,1) = -4e - \frac{\pi}{2}$$

g)
$$\frac{dy}{dx}(0,0) = \frac{1}{2}$$

h)
$$\frac{dy}{dx}(1,1) = -\frac{4}{5}$$

4. a)
$$t: y-2=-\frac{3\sqrt{5}}{4}(x-\frac{2\sqrt{5}}{3}); \quad y'=-\frac{9x}{4y}.$$

b)
$$t: y-3=-\frac{250}{27}(x-\frac{1}{5}); \quad (f^{-1})'(f(x))=-\frac{2\sqrt{(x^3-2)^3}}{3x^2}.$$

c)
$$n: y+x+1=0$$
; $y'=-\frac{x+y}{x+3y}$ e $y'_P=1$.

d)
$$t: y - \frac{1}{2} = \frac{1}{2}(x - \frac{5}{2}); \quad y' = \frac{x - y}{x + 3y}.$$

e)
$$y = \frac{1}{3\ln 2}(x-1)$$
 f) $y+2 = -\frac{1}{4}(x-1)$ g) $y-1 = \frac{2}{3}x$

g)
$$y-1 = \frac{2}{3}x$$

- b) 2.
- c) -1/8.
- d) 1.
- f) 1/2.
- $g) + \infty$.

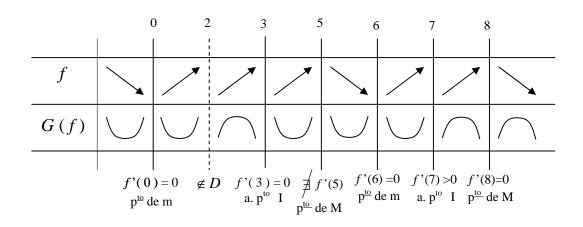
- h) $1/\sqrt{e}$
- i) 1.
- j) 2.
- k) 1.

e) 1/2.

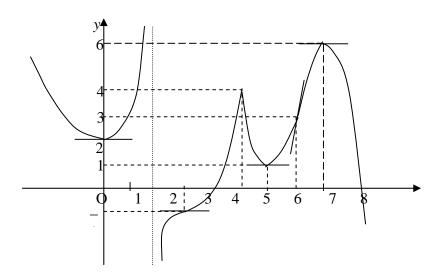
- 1) e^2 . m) $1/e^6$. n) $\sqrt[3]{e}$.

- o)1
- p) 1
- q) e^6
- r) $\frac{1}{2}$.

- 6. a = ln2
- 7. 7.1) Pontos críticos de f: 0, 3, 5, 6 e 8.
 - 7.2) Intervalos de crescimento: [0, 2 [;] 2, 5] e [6, 8]; intervalos de decrescimento: $]-\infty,0]$; [5,6] e [8, $+\infty$ [.
 - 7.3) Pontos de máximo local de f: 5 e 8; pontos de mínimo local de f: 0 e 6.
 - 7.4) CVC: $]-\infty$, 2 [e] 3, 7 [; CVB:] 2,3 [e] 7, $+\infty$ [.
 - 7.5) Abscissas de pontos de inflexão de G(f): 3 e 7.

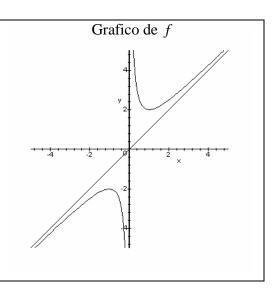


7.6) Gráfico de *f*:

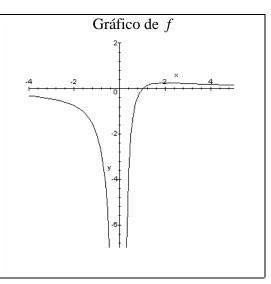


8

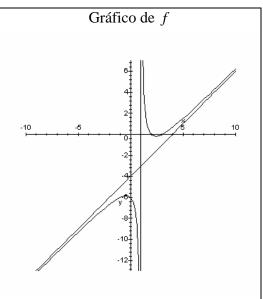
8.1) $D(f) = R^*$; o gráfico de f não intercepta os eixos coordenados; assíntota vertical: x = 0 e assíntota oblíqua: y = x (quando $x \to -\infty$ e $x \to +\infty$); as assíntotas não interceptam G(f); f é crescente em $]-\infty,-1$] e em $[1,+\infty[$ e é decrescente em [-1,0[e em]0,1]; $f'(x)=1-\frac{1}{x^2}$; ponto de máximo local de G(f): (-1,-2); ponto de mínimo local de G(f): (1,2); $f''(x)=\frac{2}{x^3}$; G(f) tem CVC em $[0,+\infty[$ e CVB em $]-\infty,0[$; G(f) não tem ponto de inflexão.



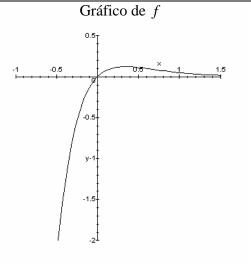
8.2) $D(f) = R^*$; o gráfico de f intercepta apenas o eixo Ox no ponto (1, 0); assíntota vertical : x = 0, assíntota horizontal: y = 0 (quando $x \to -\infty$ e $x \to +\infty$); apenas a assíntota horizontal intercepta o gráfico de f no ponto (1, 0); f é crescente em]0, [2] e é decrescente em [2], [3] ponto de máximo local do gráfico de [3] [3]; não tem ponto de mínimo local; [3]



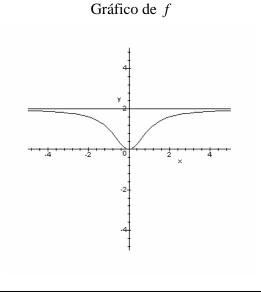
8.3) $D(x) = R - \{1\}$; interseção do eixo Ox com G(f) nos pontos: (2,0) e (3,0) e interseção do eixo Oy com G(f) no ponto: (0,-6); assíntota vertical: x = 1, assíntota oblíqua: y = x - 4 (quando $x \to -\infty$ e $x \to +\infty$); as assíntotas não interceptam G(f), a assíntota vertical intercepta Ox em (1,0) e não intercepta Oy, e a assíntota oblíqua intercepta Ox em (4,0) e Oy em (0,-4); f é crescente em $]-\infty$, $1-\sqrt{2}$] e em $[1+\sqrt{2}$, $+\infty$ [e é decrescente em $[1-\sqrt{2}$, 1 [e em] 1, $1+\sqrt{2}$]; ponto de máximo local do gráfico de f: $(1-\sqrt{2}, -2\sqrt{2}-3) \cong (-0,4,-6,2)$ e ponto de mínimo local do gráfico de f: $(1+\sqrt{2},2\sqrt{2}-3) \cong (2,4,-0,2)$; G(f) tem CVC em] 1, $+\infty$ [e CVB em] $-\infty$, 1 [; G(f) não tem ponto de inflexão.



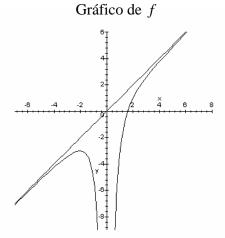
8.4) D(f) = R; o gráfico de f intercepta os eixos coordenados na origem; não tem assítota vertical nem oblíqua, e a assíntota horizontal é y = 0 $(x \to +\infty)$, que intercepta G(f) na origem; f é crescente em $]-\infty,1/3]$ e é decrescente em $[1/3,+\infty[$; o gráfico de f tem máximo local no ponto $\left(\frac{1}{3},\frac{1}{3e}\right) \cong (0,3,0,1)$ e não tem mínimo local; G(f) tem CVC em $]2/3,+\infty[$ e tem CVB em $]-\infty,2/3[$; ponto de inflexão: $\left(\frac{2}{3},\frac{2}{3e^2}\right) \cong (0,7,0,1)$.



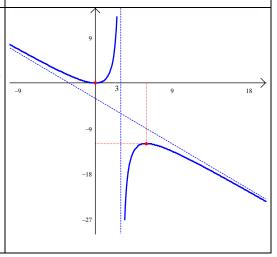
8.5) D(f) = R; o gráfico de f intercepta os eixos coordenados na origem; não tem assíntota vertical nem oblíqua, e a assíntota horizontal é y = 2 (quando $x \to -\infty$ e $x \to +\infty$), que não intercepta G(f) e intercepta apenas o eixo Oy no ponto (0, 2); $f \notin$ crescente em $[0, +\infty[$ e é decrescente em $]-\infty,0]$; o gráfico de f tem mínimo local no ponto O(0,0)e não tem máximo local; G (f) tem CVC em e em $\left| \frac{1}{\sqrt{3}}, +\infty \right|$ tem CVB em



8.6) $D(f) = R^*$; o gráfico de f intercepta apenas o eixo Ox no ponto $(\sqrt[3]{4},0)$; assíntota vertical: x=0, não tem assíntota horizontal e a assíntota oblíqua é y = x(quando $x \rightarrow -\infty$ e $x \rightarrow +\infty$), que não intercepta G(f) e intercepta os eixos coordenados na origem; f é crescente em $]-\infty,-2]$ e em $]0,+\infty[$ e é decrescente em [-2, 0 [; G (f) não tem mínimo local e tem máximo local no ponto (-2, -3); G(f)tem apenas CVB em $]-\infty$, 0 [e em] 0, $+\infty$ [; não tem ponto de inflexão.



8.7) $D(f) = R - \{3\}$; *; o gráfico de f intercepta os eixos na origem (0,0); assíntota vertical: x = 3, não tem assíntota horizontal e a assíntota oblíqua é y = -x-3(quando $x \rightarrow -\infty$ e $x \rightarrow +\infty$), que não intercepta G(f) e intercepta os eixos em (-3,0) e (0,-3); $f \notin$ decrescente em $]-\infty,0]$ e em $[6, +\infty[$ crescente em [0,3[e em]3,6] ; G(f) tem mínimo local no ponto (0,0) e tem máximo local no ponto (6, -12); G(f) tem CVC em $]-\infty$, 3 [e CVB em] 3, $+\infty$ [; não tem ponto de inflexão.



9.

9.1) a = -11 e b = 19. (Observe que f''(1) < 0, logo, nestas condições, 1 é ponto de máximo relativo de f).

9.2)
$$a = -6$$
 e $b = 8$. 9.3) $a = -\frac{9}{2}$ e $b = 6$.

10.

- 10.1) O valor mínimo do custo médio por unidade produzida é de R\$ 35,00.
- 10.2) A melhor ocasião de venda se dá no 5° ano (ou t = 4 anos).

10.3)
$$a = 100 \ m$$
 e $r = \frac{100}{\pi} \ m$.

- 10.4) A base quadrada deve ter lados de medida 4 cm cada e a altura deve medir 2 cm.
- 10.5) Os lados onde foram considerados os lados médios devem medir 10 cm cada e os outros dois lados 5 cm cada.
- 10.6) A viga de resistência máxima que pode ser cortada em um toro cilíndrico de raio a deve ter largura de $\frac{2a}{3}\sqrt{3}$ e altura de $\frac{2a}{3}\sqrt{6}$.
- 10.7) a = 3/2 u.c e b = 3 u.c.
- 10.8) x = 12 cm e y = 6 cm

10.9)
$$r = \sqrt[3]{\frac{2}{3\pi}} \,\mathrm{m}$$
 e $h = 2\sqrt[3]{\frac{9\pi^2}{4}} \,\mathrm{m}$.